Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia.

نویسندگان

  • J Gibbs
  • S Morrell
  • A Valdez
  • T L Setter
  • H Greenway
چکیده

To investigate regulation of anaerobic carbohydrate catabolism in anoxia-tolerant plant tissue, rate of alcoholic fermentation and maximum catalytic activities of four key enzymes were assessed in coleoptiles of two rice cultivars that differ in tolerance to anoxia. The enzymes were ATP-dependent phosphofructokinase (PFK), pyrophosphate-dependent phosphofructokinase (PFP), pyruvate decarboxylase (PDC), and alcohol dehydrogenase (ADH). During anoxia, rates of coleoptile elongation and ethanol synthesis were faster in the more tolerant variety Calrose than in IR22. Calrose coleoptiles, in contrast to IR22, also showed a sustained Pasteur effect, with the estimated rate of glycolysis during anoxia being 1.4-1.7-fold faster than that of aerobic coleoptiles. In Calrose after 5 d anoxia, maximum catalytic activities of crude enzyme extracts were (in mumol substrate g-1 fresh weight min.-1) 170-240 for ADH, 4-6 for PDC and PFP and 0.4-0.7 for PFK. During anoxia, activity per coleoptile of all four enzymes increased 3-5.5-fold, suggesting that PFK, and PFP, like PDC and ADH, are synthesised in anoxic rice coleoptiles. Enzyme activities, on a fresh weight basis, were lower in IR22 than in Calrose. In vivo activities of PDC and PFK in anoxic coleoptiles from both cultivars were calculated using in vitro activities, estimated substrate levels, cytoplasmic pH, and S0.5 (the substrate level at which 0.5Vmax is reached, without inferring Michaelis-Menten kinetics). Data indicated that potential carbon flux through PFK, rather than through PDC, more closely approximated rates of alcoholic fermentation. That PFK is an important site of regulation was supported further for Calrose coleoptiles by a decrease in the concentration of its substrate pool (F-6-P + G-6-P) following the onset of anoxia. By contrast, in IR22, there was little evidence for control by PFK, consistent with recent evidence that suggests substrate supply limits alcoholic fermentation in this cultivar.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative analysis of anoxic coleoptile elongation in rice varieties: relationship between coleoptile length and carbohydrate levels, fermentative metabolism and anaerobic gene expression.

Rice (Oryza sativa L.) seeds can germinate under anoxia and can show coleoptile elongation. The anoxic coleoptile is usually longer than aerobic coleoptiles. Although several hypotheses have been proposed to explain the ability of rice to elongate coleoptiles under anoxia, conclusive experimental evidence explaining this physiological trait is lacking. In order to investigate whether metabolic ...

متن کامل

Expansin gene expression and anoxic coleoptile elongation in rice cultivars.

Coleoptiles of rice seeds that germinate under anoxia usually elongate to a length far exceeding the elongation that takes place under aerobic conditions. It has been suggested that expansins play a role in this process, but studies examining correlations between transcript levels of expansin genes and anoxic growth of rice coleoptiles are limited. In this study, we used real-time quantitative ...

متن کامل

Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis

Oxygen deprivation limits the energy available for cellular processes and yet no comprehensive ATP budget has been reported for any plant species under O(2) deprivation, including Oryza sativa. Using 3-d-old coleoptiles of a cultivar of O. sativa tolerant to flooding at germination, (i) rates of ATP regeneration in coleoptiles grown under normoxia (aerated solution), hypoxia (3% O(2)), and anox...

متن کامل

Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance.

Rice (Oryza sativa) and wheat (Triticum aestivum) are the most important starch crops in world agriculture. While both germinate with an anatomically similar coleoptile, this tissue defines the early anoxia tolerance of rice and the anoxia intolerance of wheat seedlings. We combined protein and metabolite profiling analysis to compare the differences in response to anoxia between the rice and w...

متن کامل

Regulation of intracellular pH during anoxia in rice coleoptiles in acidic and near neutral conditions

Rice coleoptiles, renowned for anoxia tolerance, were hypoxically pretreated, excised, 'healed', and then exposed to a combination of anoxia and pH 3.5. The putative acid load was confirmed by net effluxes of K(+) to the medium, with concurrent net decreases of H(+) in the medium, presumably mainly due to H(+) influx. Yet the coleoptiles survived the combination of anoxia and pH 3.5 for at leas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of experimental botany

دوره 51 345  شماره 

صفحات  -

تاریخ انتشار 2000